Skip to main content
Log in

The Lunar One-Sixth Low Gravity Conduciveness to the Improvement of the Cold Resistance of Plants

  • Research
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

For humanity to complete its ambitious solar system exploration, it is crucial to comprehend how terrestrial life reacts to differing planet gravity. We followed the life trajectory of an earth cotton seed's germination, development, and ultimate fate after prolonged exposure to extremely low temperatures using the life-regeneration ecosystem carried by Chang'e 4 probe, which landed on the Moon on January 3rd, 2019, for the first time in human history. In a controlled environment with similar characteristics, such as temperature, humidity, air pressure, and nutrition, we compared this life trajectory on the moon to that on Earth, except for the differences in gravity, light, and radiation. We discovered that the 1/6 g moon gravity speeds up seed germination. Surprisingly, Moon seed-lings demonstrated rapid acclimatization to super-freezing (below minus 52 degrees Celsius) under 1/6 g lunar gravity, maintaining upright and green despite exposure to long-term extremely cold temperatures for 18–24 hours. Based on cellular and molecular reactions caused by moon-low gravity, we suggest probable mechanisms for cold resilience. These unique findings will enhance our understanding of how plants adapt to suboptimal environmental conditions in space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of Data and Material

The data used to support the findings of this study are included within the article and its supplementary material.

References

  • Arakawa, K., Kasuga, J., Takata, N.: Mechanism of Overwintering in Trees. Adv. Exp. Med. Biol. 1081, 129–47 (2018). https://doi.org/10.1007/978-981-13-1244-1_8

    Article  Google Scholar 

  • Armstrong, A.F., Logan, D.C., Tobin, A.K., O’Toole, P., Atkin, O.K.: Heterogeneity of plant mitochondrial responses underpinning respiratory acclimation to the cold in Arabidopsis thaliana leaves. Plant Cell Environ. 29(5), 940–9 (2006). https://doi.org/10.1111/j.1365-3040.2005.01475.x

    Article  Google Scholar 

  • Battaglia, M., Cherry, M.L., Beadle, C.L., Sands, P.J., Hingston, A.: Freezing behaviors in leaf buds of cold-hardy conifers visualized by NMR microscopy. Tree Physiol. 18(8_9), 521–528 (1998)

  • Bingham, G.E., Levinskikh, M.A., Sytchev, V.N., Podolsky, I.G.: Effects of gravity on plant growth. J. Gravit. Physiol. 7(2), P5-8 (2000)

    Google Scholar 

  • Bohnert, H.J., Gong, Q.Q., Li, P.H., Ma, S.S.: Unraveling abiotic stress tolerance mechanisms - getting genomics going. Curr. Opin. Plant Biol. 9(2), 180–8 (2006). https://doi.org/10.1016/j.pbi.2006.01.003

    Article  Google Scholar 

  • Boucheron-Dubuisson, E., Manzano, A.I., Le Disquet, I., Matía, I., Sáez-Vasquez, J., van Loon, J.J.W.A., et al.: Functional alterations of root meristematic cells of Arabidopsis thaliana induced by a simulated microgravity environment. J. Plant Physiol. 207, 30–41 (2016). https://doi.org/10.1016/j.jplph.2016.09.011

    Article  Google Scholar 

  • Boulant, S., Kural, C., Zeeh, J.C., Ubelmann, F., Kirchhausen, T.: Actin dynamics counteract membrane tension during clathrin-mediated endocytosis. Nat. Cell Biol. 13(9), 1124-U158 (2011). https://doi.org/10.1038/ncb2307

    Article  Google Scholar 

  • Bugbee, B.G., Salisbury, F.B.: Exploring The Limits of Crop Productivity 1. Photosynthetic Efficiency of Wheat In High Irradiance Environments. Plant Physiol. 88(3), 869–878 (1988)https://doi.org/10.1104/pp.88.3.869.

  • Chandler, P.M., Robertson, M.:Gene Expression Regulated by Abscisic Acid and its Relation to Stress Tolerance. Ann. Rev. Plant Physiol. Plant Mol. Biol. 45(1), 113-41 (1994).https://doi.org/10.1146/annurev.pp.45.060194.000553.

  • Clement, J.Q.: Gene Expression Microarrays in Microgravity Research: Toward the Identification of Major Space Genes. InTech. (2012)

  • Darigh, F., Iranbakhsh, A., Oraghi Ardebili, Z., Ebadi, M., Hassanpour, H.: Simulated microgravity contributed to modification of callogenesis performance and secondary metabolite production in Cannabis Indica. Plant Physiology and Biochemistry. 186, 157–68 (2022). https://doi.org/10.1016/j.plaphy.2022.07.012

    Article  Google Scholar 

  • Ding, J.P., Pickard, B.G.: Modulation of mechanosensitive calcium-selective cation channels by temperature. Plant J. Cell Mol. Biol. 3(5), 713–20 (1993)

    Article  Google Scholar 

  • Eremina, M., Rozhon, W., Poppenberger, B.: Hormonal control of cold stress responses in plants. Cellular and molecular life sciences : CMLS. 73(4), 797–810 (2016). https://doi.org/10.1007/s00018-015-2089-6

    Article  Google Scholar 

  • Ferl, R., Wheeler, R., Levine, H.G., Paul, A.-L.: Plants in space. Curr. Opin. Plant Biol. 5(3), 258–63 (2002). https://doi.org/10.1016/S1369-5266(02)00254-6

    Article  Google Scholar 

  • Hausmann, N., Fengler, S., Hennig, A., Franz-Wachtel, M., Hampp, R., Neef, M.: Cytosolic calcium, hydrogen peroxide and related gene expression and protein modulation in Arabidopsis thaliana cell cultures respond immediately to altered gravitation: parabolic flight data. Plant Biol. 16(s1), 120–8 (2014). https://doi.org/10.1111/plb.12051

    Article  Google Scholar 

  • Hayakawa, K., Tatsumi, H., Sokabe, M.: Actin filaments function as a tension sensor by tension-dependent binding of cofilin to the filament. J. Cell Biol. 195(5), 721–7 (2011). https://doi.org/10.1083/jcb.201102039

    Article  Google Scholar 

  • Jankovska-Bortkevič, E., Gavelienė, V., Šveikauskas, V., Mockevičiūtė, R., Jankauskienė, J.:Foliar Application of Polyamines Modulates Winter Oilseed Rape Responses to Increasing Cold. 9(2) (2020)https://doi.org/10.3390/plants9020179.

  • Kamada, M., Oka, M., Inoue, R., Fujitaka, Y., Miyamoto, K., Uheda, E., et al.: Gravity-regulated localization of PsPIN1 is important for polar auxin transport in etiolated pea seedlings: Relevance to the International Space Station experiment. Life Sci. Space Res. 22, 29–37 (2019). https://doi.org/10.1016/j.lssr.2019.07.001

    Article  Google Scholar 

  • Kasuga, J., Arakawa, K., Fujikawa, S.: High accumulation of soluble sugars in deep supercooling Japanese white birch xylem parenchyma cells. New Phytol. 174(3), 569–79 (2007). https://doi.org/10.1111/j.1469-8137.2007.02025.x

    Article  Google Scholar 

  • Kordyum, E.L.: Calcium signaling in plant cells in altered gravity. In: Bruce LL, Ijiri K, Perbal G, editors. Space Life Sciences: Gravitational Biol. 1621–1630 (2003)

  • Kordyum, E.L., Chapman, D.K.: Plants and Microgravity: Patterns of Microgravity Effects at the Cellular and Molecular Levels. Cytol. Gen. 51(2), 108–16 (2017). https://doi.org/10.3103/S0095452717020049

    Article  Google Scholar 

  • Kordyum, V.A., Shepelev, E.Y., Meleshko, G.I., Setlik, I., Kordyum, E.L., Sytnik, K.M., et al.: Biological studies of Chlorella pyrenoidosa (strain LARG-1) cultures grown under space flight conditions. Life Sci. Space Res. 18, 199–204 (1980)

    Article  Google Scholar 

  • Kozeko, L., Kordyum, E.: The stress protein level under clinorotation in context of the seedling developmental program and the stress response. Microgravity Science and Technology. 18(3–4), 254–6 (2006). https://doi.org/10.1007/BF02870422

    Article  Google Scholar 

  • Nava, M.M., Miroshnikova, Y.A., Biggs, L.C., Whitefield, D.B., Metge, F., Boucas, J., et al.: Heterochromatin-Driven Nuclear Softening Protects the Genome against Mechanical Stress-Induced Damage. Cell. 181(4), 800–17.e22 (2020). https://doi.org/10.1016/j.cell.2020.03.052

    Article  Google Scholar 

  • Kuprian, E., Munkler, C., Resnyak, A., Zimmermann, S., Tuong, T.D., Gierlinger, N., et al.: Complex bud architecture and cell-specific chemical patterns enable supercooling of Picea abies bud primordia. Plant Cell Environ. 40(12), 3101–12 (2017). https://doi.org/10.1111/pce.13078

    Article  Google Scholar 

  • Kusters, R., Simon, C., Dos Santos, R.L., Caorsi, V., Wu, S.S., Joanny, J.F., et al.: Actin shells control buckling and wrinkling of biomembranes. Soft Matter. Kordyum 15(47), 9647–53 (2019). https://doi.org/10.1039/c9sm01902b

    Article  Google Scholar 

  • Liu, C., Wang, J., Wu, D., Tang, Z.: Adaptative responses of tobacco callus cells to simulated microgravity by compensation. Microgravity quarterly : MGQ. 3, 17–21 (1993)

    Google Scholar 

  • Liu, Y., Xie, G., Yang, Q., Ren, M.: Biotechnological development of plants for space agriculture. Nat Commun. 12(1), 5998 (2021). https://doi.org/10.1038/s41467-021-26238-3

    Article  Google Scholar 

  • Malone, S.R., Ashworth, E.N.: Freezing stress response in woody tissues observed using low-temperature scanning electron microscopy and freeze substitution techniques. Plant Physiol. 95(3), 871–81 (1991). https://doi.org/10.1104/pp.95.3.871

    Article  Google Scholar 

  • Matía, I., González-Camacho, F., Herranz, R., Kiss, J.Z., Gasset, G., van Loon, J.J.W.A., et al.: Plant cell proliferation and growth are altered by microgravity conditions in spaceflight. J. Plant Physiol. 167(3), 184–93 (2010). https://doi.org/10.1016/j.jplph.2009.08.012

    Article  Google Scholar 

  • Mazars, C., Brière, C., Grat, S., Pichereaux, C., Carnero-Diaz, E.: Microgravity Induces Changes in Microsome-Associated Proteins of Arabidopsis Seedlings Grown on Board the International Space Station. PloS one. 9(3),(2014)

    Article  Google Scholar 

  • Mohammadalikhani, S., Ghanati, F., Hajebrahimi, Z., Sharifi, M.: Molecular and biochemical modifications of suspension-cultured tobacco cell walls after exposure to alternative gravity. Plant Physiology and Biochemistry. 176, 1–7 (2022). https://doi.org/10.1016/j.plaphy.2022.02.012

    Article  Google Scholar 

  • Monshausen, G.B., Miller, N.D., Murphy, A.S., Gilroy, S.: Dynamics of auxin-dependent Ca2+ and pH signaling in root growth revealed by integrating high-resolution imaging with automated computer vision-based analysis. Plant J. 65(2), 309–18 (2011). https://doi.org/10.1111/j.1365-313X.2010.04423.x

    Article  Google Scholar 

  • Morohashi, K., Okamoto, M., Yamazaki, C., Fujii, N., Miyazawa, Y., Kamada, M., Kasahara, H., Osada, I., Shimazu, T., Fusejima, Y., Higashibata, A.:Gravitropism interferes with hydrotropism via counteracting auxin dynamics in cucumber roots: clinorotation and spaceflight experiments. New Phytologist. 215(4) (2017)

  • Mortley, D.G., Bonsi, C.K., Hill, W.A., Morris, C.E., Wheeler, R.M.: Influence of Microgravity Environment on Root Growth, Soluble Sugars, and Starch Concentration of Sweetpotato Stem Cuttings. J. Am. Soc. Horticultural Sci. 133(3), 327–32 (2008)

    Article  Google Scholar 

  • Musgrave, M.E., Kuang, A., Xiao, Y., Stout, S.C., Bingham, G.E., Briarty, L.G.,et al.: Gravity independence of seed-to-seed cycling in Brassica rapa. Planta210(3), 400–406 (2000)

  • Najrana, T., Sanchez-Esteban, J.: Mechanotransduction as an Adaptation to Gravity. Front. Ped. 4 (2016). https://doi.org/10.3389/fped.2016.00140.

  • Nakamura, M., Toyota, M., Tasaka, M., Morita, M.T.: An Arabidopsis E3 Ligase, SHOOT GRAVITROPISM9, Modulates the Interaction between Statoliths and F-Actin in Gravity Sensing. Plant Cell. 23(5), 1830–48 (2011). https://doi.org/10.1105/tpc.110.079442

    Article  Google Scholar 

  • Nedukha, O., Kordyum, E., Grakho, V., Vorobyova, T., Zhupanov, I.: Fatty acid content and microviscosity in pea seedlings plasmalemma under clinorotation. (2013)

  • Nick, P., Bergfeld, R., Schafer, E., Schopfer, P.: Unilateral reorientation of microtubules at the outer epidermal wall during photo- and gravitropic curvature of maize coleoptiles and sunflower hypocotyls Planta. 181(2), 162–8 (1990). https://doi.org/10.1007/BF02411533

    Article  Google Scholar 

  • Pagter, M., Jensen, C.R., Petersen, K.K., Liu, F., Arora, R.: Changes in carbohydrates, ABA and bark proteins during seasonal cold acclimation and deacclimation in Hydrangea species differing in cold hardiness. Physiologia plantarum. 134(3), 473–85 (2008). https://doi.org/10.1111/j.1399-3054.2008.01154.x

    Article  Google Scholar 

  • Paul, A.L., Zupanska, A.K., Ostrow, D.T., Zhang, Y.P., Sun, Y.J., Li, J.L., et al.: Spaceflight Transcriptomes: Unique Responses to a Novel Environment. Astrobiology. 12(1), 40–56 (2012). https://doi.org/10.1089/ast.201Malone1.0696

    Article  Google Scholar 

  • Paul, A.L., Zupanska, A.K., Schultz, E.R., Ferl, R.J.: Organ-specific remodeling of the Arabidopsis transcriptome in response to spaceflight. BMC Plant Biol. 13(1), 112 (2013)

    Article  Google Scholar 

  • Pearce, R.S.: Molecular analysis of acclimation to cold. Plant Growth Regulation. 29(1), 47–76 (1999). https://doi.org/10.1023/A:1006291330661

    Article  MathSciNet  Google Scholar 

  • Polulyakh, Y.: Adaptive changes of plant cell plasma membranes under altered gravity. J. Gravitational Physiol. J. Int. Soc. Gravitational Physiol. 5(1), P167-8 (1998)

    Google Scholar 

  • Qiu, D., Jian, Y., Zhang, Y., Xie, G.:Plant Gravitropism and Signal Conversion under a Stress Environment of Altered Gravity. Int. J. Mol. Sci. 22(21) (2021).https://doi.org/10.3390/ijms222111723.

  • Sack, F.D.: Plastids and gravitropic sensing. Planta. 203(Suppl 1), S63-8 (1997). https://doi.org/10.1007/pl00008116

    Article  Google Scholar 

  • Sakai, A., Larcher, W.: Frost survival of plants: responses and adaptation to freezing stress. Springer-Verlag, Berlin (1987)

    Book  Google Scholar 

  • Sheet, S., Yesupatham, S., Ghosh, K., Choi, M.S., Shim, K.S., Lee, Y.S.:Modulatory effect of low-shear modeled microgravity on stress resistance, membrane lipid composition, virulence, and relevant gene expression in the food-borne pathogen Listeria monocytogenes. Enzyme Microbial Technol.133, 109440 (2020).https://doi.org/10.1016/j.enzmictec.2019.109440.

  • Soga, K., Wakabayashi, K.: Growth and cortical microtubule dynamics in shoot organs under microgravity and hypergravity conditions. 13(1), e1422468 (2018).https://doi.org/10.1080/15592324.2017.1422468.

  • Staves, M.P.: Cytoplasmic streaming and gravity sensing in Chara internodal cells. Planta. 203(Suppl 1), S79-84 (1997). https://doi.org/10.1007/pl00008119

    Article  Google Scholar 

  • Steponkus, P.L., Uemura, M., Balsamo, R.A., Arvinte, T., Lynch, D.V.: Transformation of the cryobehavior of rye protoplasts by modification of the plasma membrane lipid composition. Proceedings of the National Academy of Sciences of the United States of America. 85(23), 9026–30 (1988). https://doi.org/10.1073/pnas.85.23.9026

    Article  Google Scholar 

  • Sychev, V.N., Levinskikh, M.A., Gostimsky, S.A., Bingham, G.E., Podolsky, I.G.: Spaceflight effects on consecutive generations of peas grown onboard the Russian segment of the International Space Station. Acta Astronautica. 60(4–7), 426–32 (2007). https://doi.org/10.1016/j.actaastro.2006.09.009

    Article  Google Scholar 

  • Takata, N., Kasuga, J., Takezawa, D., Arakawa, K., Fujikawa, S.: Gene expression associated with increased supercooling capability in xylem parenchyma cells of larch (Larix kaempferi). J. Exp. Bot. 58(13), 3731–42 (2007). https://doi.org/10.1093/jxb/erm223

    Article  Google Scholar 

  • Toyota, M., Gilroy, S.: Gravitropism and mechanical signaling in plants. Am. J. Bot. 100(1), 111–25 (2013). https://doi.org/10.3732/ajb.1200408

    Article  Google Scholar 

  • Ukaji, N., Kuwabara, C., Takezawa, D., Arakawa, K., Yoshida, S., Fujikawa, S.: Accumulation of small heat-shock protein homologs in the endoplasmic reticulum of cortical parenchyma cells in mulberry in association with seasonal cold acclimation. Plant Physiol. 120(2), 481–90 (1999). https://doi.org/10.1104/pp.120.2.481

    Article  Google Scholar 

  • Vandenbrink, J.P., Kiss, J.Z.: Plant responses to gravity. Seminars Cell Dev. Biol. 92, 122–5 (2019). https://doi.org/10.1016/j.semcdb.2019.03.011

    Article  Google Scholar 

  • Vandenbrink, J.P., Herranz, R., Poehlman, W.L., Alex Feltus, F., Villacampa, A., Ciska, M., et al.: RNA-seq analyses of Arabidopsis thaliana seedlings after exposure to blue-light phototropic stimuli in microgravity. Am. J. Bot. 106(11), 1466–76 (2019). https://doi.org/10.1002/ajb2.1384

    Article  Google Scholar 

  • VEISZ, O.: Effect of abscisic acid on the cold hardiness of wheat seedlings. J. Plant Physiol. 149 (1996)

  • Wakabayashi, K., Soga, K., Hoson, T., Kotake, T., Kojima, M., Sakakibara, H., et al.: Persistence of plant hormone levels in rice shoots grown under microgravity conditions in space: its relationship to maintenance of shoot growth. Physiologia plantarum. 161(2), 285–93 (2017). https://doi.org/10.1111/ppl.12591

    Article  Google Scholar 

  • Wang, F., Chen, S., Liang, D., Qu, G.Z., Chen, S., Zhao, X.: Transcriptomic analyses of Pinus koraiensis under different cold stresses. 21(1), 10 (2020). https://doi.org/10.1186/s12864-019-6401-y

    Article  Google Scholar 

  • Wheeler, R.M., Mackowiak, C.L., Stutte, G.W., Sager, J.C., Yorio, N.C., Ruffe, L.M.et al.: NASA's biomass production chamber: A testbed for bioregenerative life support studies. In: MacElroy RD, Kreuzberg K, Nielsen S, Tibbits TW, editors. Nat. Artif. Ecosys. 215–224 (1996)

  • Xin, Z., Browse, J.: Cold Comfort Farm: The acclimation of plants to freezing temperatures. Plant Cell Environ. 23(9), 893–902 (2000)

    Article  Google Scholar 

  • Xu, P., Chen, H., Hu, J., Pang, X., Jin, J., Cai, W.: Pectin methylesterase gene AtPMEPCRA contributes to physiological adaptation to simulated and spaceflight microgravity in Arabidopsis. iScience 25(5), 104331 (2022). https://doi.org/10.1016/j.isci.2022.104331

  • Yano, S., Kasahara, H., Masuda, D., Tanigaki, F., Shimazu, T., Suzuki, H.,et al.: Improvements in and actual performance of the Plant Experiment Unit onboard Kibo, the Japanese experiment module on the international space station. Adv. Space Res. 51(5), 780–788 (2013)

  • Zhang, Y., Wang, L., Xie, J., Zheng, H.: Differential protein expression profiling of Arabidopsis thaliana callus under microgravity on board the Chinese SZ-8 spacecraft. Planta. 241(2), 475–88 (2015). https://doi.org/10.1007/s00425-014-2196-x

    Article  Google Scholar 

  • Zheng, L., Liu, Q., Wu, R., Zhu, M., Dorjee, T.,et al.: The alteration of proteins and metabolites in leaf apoplast and the related gene expression associated with the adaptation of Ammopiptanthus mongolicus to winter freezing stress. Int. J. Biol. Macromol. 240, 124479 (2023).https://doi.org/10.1016/j.ijbiomac.2023.124479.

  • Zupanska, A.K., Denison, F.C., Ferl, R.J., Paul, A.L.: Spaceflight engages heat shock protein and other molecular chaperone genes in tissue culture cells of Arabidopsis Thaliana American Journal of Botany. 100(1), 235–48 (2013). https://doi.org/10.3732/ajb.1200343

    Article  Google Scholar 

Download references

Acknowledgments

Gengxin Xie acknowledges the support by The Third Pre-research Projects of the Civil Space Project from China National Space Administration (CNSA), “The Key Technology for the Construction of Micro-Ecospheres Adapted to the Lunar Environment.” (NO. 6141A020221) and Ministry of Education Equipment Pre-research Joint Fund of the Ministry of Education, “The Key Technologies for the Construction and Control of Bioregenerative Life Support Systems.” (NO. 8091B010103).

Funding

This research was funded by The Third Pre-research Projects of the Civil Space Project from China National Space Administration (CNSA), “The Key Technology for the Construction of Micro-Ecospheres Adapted to the Lunar Environment.”, grant number 6141A020221” and Ministry of Education Equipment Pre-research Joint Fund of the Ministry of Education, “The Key Technologies for the Construction and Control of Bioregenerative Life Support Systems”, grant number 8091B010103. The Third Pre-research Projects of the Civil Space Project from China National Space Administration (CNSA),“The Key Technology for the Construction of Micro-Ecospheres Adapted to the Lunar Environment.”,NO. 6141A020221,Ministry of Education Equipment Pre-research Joint Fund of the Ministry of Education,“The Key Technologies for the Construction and Control of Bioregenerative Life Support Systems.”,NO. 8091B010103

Author information

Authors and Affiliations

Authors

Contributions

General manager, proposing research, Gengxin Xie.; main manuscript writing, Jing Yang; participating in manuscript writing and research, Yuxuan Xu.; participating in research, Yuanxun Zhang, Dan Qiu. and Jinghang Ding; All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Gengxin Xie.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare that there are no financial or proprietary interests that can lead to a conflict of interest in the current paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, G., Yang, J., Xu, Y. et al. The Lunar One-Sixth Low Gravity Conduciveness to the Improvement of the Cold Resistance of Plants. Microgravity Sci. Technol. 35, 35 (2023). https://doi.org/10.1007/s12217-023-10058-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12217-023-10058-9

Keywords

Navigation